CARDIOTOMY SUCTION IN 1988

In 1988, Malinauskas and coworkers lamented that despite three decades of improvement to cardiopulmonary bypass components, the cardiotomy suction system remained essentially unchanged (1). Now, nearly two and a half decades after this classic article was published, the cardiotomy suction system still essentially remains unchanged. We are hard-pressed to find publications or inventions improving on the autotransfusion subsystem of the cardiopulmonary bypass (CPB) apparatus. There are publications recommending not using cardiotomy suction during CPB.

When you search “cardiopulmonary bypass cardiotomy suction” in PubMed.gov, 89 citations are returned. The same key words submitted to Google return 42,000 results. Searching the term “cardiotomy suction” in the Journal of ExtraCorporeal Technology search tool yields two articles. In addition to Malinauskas et al., Kinard, Shackelford, and Sistino reported reduction in circulating fat emboli in an in vitro model when cardiotomy blood is allowed to sit and the bottom 100 mL of reservoir blood is discarded (2). Not surprisingly, Kinard (senior student in 2009) and his faculty coauthors hail from the Medical University of South Carolina (MUSC). The perfusion faculty at MUSC have a working knowledge of the perfusion literature and the history of perfusion publications (3).

MEDICAL UNIVERSITY OF SOUTH CAROLINA AND CLEMSON UNIVERSITY

This 1988 research team from the MUSC is accomplished. Jim Dearing founded and directed the perfusion education program in Charleston at MUSC. Jim, who met an untimely death, was recently named one of American Society of ExtraCorporeal Technology’s Pioneers in Perfusion. Jim was my teacher and mentor. I often ask myself “What would Jim Dearing do?” when confronted with challenging perfusion issues.

Drs. Fred Crawford and Robert Sade are excellent teachers and surgeons who support perfusion education and improvements to CPB therapy and equipment. Dr. Sade is a leading surgeon ethicist (4). They served as perfusion education program medical directors in the late 1970s thru the 1990s. When I served as director of the MUSC Perfusion Education Program director, I was the benefactor of Drs. Sade and Crawford’s inspirational and invaluable leadership. They are advocates for perfusionists. For decades, Dr. Frank Spinale directed numerous clinical and laboratory research projects in the Cardiovascular Surgery Division at MUSC.

The MUSC research team joined forces with nearby Clemson University’s Bioengineering Department, specifically, Dr. Andreas von Recum and Richard Malinauskas, to develop a test circuit to measure damage by cardiotomy suction systems. The authors focused on the blood damaging elements of aspirator tip design and the amount of room air added to the suction blood. They measured canine blood plasma free hemoglobin levels, platelet loss, and red blood cell osmotic fragility with different degrees of air mixture to the suction tip. They calculated suction tip shear stress and their statistical methods were solid.

Our classic article concludes that the air admixture at the suction tip remains perhaps the greatest design fault to the CPB circuit. One may generalize that it is better to place a sucker tip under a well of blood than to aspirate air and blood simultaneously. Hopefully, this principle of pump sucker discipline is taught to most perfusion students and surgical residents. The “no air” suction system as recommended by the authors has not been developed. We know the cardiotomy suction blood is damaged, contains fat emboli, tissue debris, and inflammatory response mediators that can potentially cause neurologic dysfunction, yet our patients seem to tolerate the damage (5).
IS CARDIOTOMY SUCTION DAMAGE CLINICALLY SIGNIFICANT?

Is the damage from cardiotomy suction clinically significant? Let’s ask the experts. The evidence-based review by Shann and colleagues addressed the practice of adult CPB reinfusion of blood exposed to pericardial surfaces and yielded two recommendations (6):

“Direct reinfusion to the CPB circuit of unprocessed blood exposed to pericardial and mediastinal surfaces should be avoided. (Class I, Level B)”

“Blood cell processing and secondary filtration can be considered to decrease the deleterious effects of reinfused shed blood. (Class IIb, Level B)”

The recommendations from the Society of Cardiovascular Anesthesiologists, Society of Thoracic Surgeons, and International Consortium for Evidence-Based Perfusion associated with the avoidance of cardiotomy suction blood return to the arterial-venous loop during CPB are not Level Ia (Level of evidence A) (7):

“During CPB, intraoperative autotransfusion, either with blood directly from cardiotomy suction or recycled using centrifugation to concentrate red cells, may be considered as part of a blood conservation program. IIb (Level of evidence C)”

“Postoperative mediastinal shed blood reinfusion using mediastinal blood processed by centrifugation may be considered for blood conservation when used in conjunction with other blood conservation interventions. Washing of shed mediastinal blood may decrease lipid emboli, decrease the concentration of inflammatory cytokines, and reinfusion of washed blood may be reasonable to limit blood transfusion as part of a multimodality blood conservation program. IIb (Level of evidence B)”

The guidelines weakly recommend the “separation of cardiotomy suction” as part of a multimodality approach to blood conservation.

The Cardiotomy Trial, the largest double-blinded randomized control trial comparing direct reinfusion of cardiotomy suction blood to cell washing, contrary to expectations, demonstrated processing of cardiotomy blood before reinfusion results in greater blood product use with greater postoperative bleeding in patients undergoing cardiac surgery (8). The Trial did not show significant differences in neurologic outcomes. Later in the same year and in the same journal, Djaiani et al. reported measuring improved cognitive function in elderly patients when the CPB suction blood is processed by continuous-flow cell washing, presumably by decreasing lipid embolization (9). Of course, the price we pay for cell washing is throwing out the plasma proteins and surviving functional platelets. CPB hemoconcentration and modified ultrafiltration has its pros and cons (10,11). Elahi and Matata explained this clinical question as a “clinico-pathologic mystery” (12).

Just like our classic article authors, we are left with the conclusion that there is no definitive answer for the cardiotomy suction damage and the “no wash” or “sequester and wash” or “hemoconcentrate” prior to reinfusion dilemma.

CONCLUSION

Useful information resulted from a multidisciplined, dual institutional project reported in our classic article, and it is worth the investment of time to read the 1988 publication. Cardiotomy suction remains the weak link in the extracorporeal circuit, an area ripe for research and redesign. Studies that quantify the effects of cardiotomy suction are needed. Moreover, a discriminate blood salvage protocol that can be understood and implemented in the clinical arena by team members at the surgical field and behind the pump would be a worthy contribution. Perhaps the faculty and students at MUSC shall carry on in pursuit of this ripe research opportunity. We need to improve our pump sucker discipline.

Jeffrey B. Riley, MHPE, CCT, CCP
St. Mary’s Mayo Clinic, Perfusion Department
Rochester, MN
<Riley.Jeffrey@mayo.edu>

REFERENCES

J. RILEY
Blood Damaging Effects in Cardiotomy Suction Return

Richard A. Malinauskas, Robert M. Sade, James P. Dearing, Francis G. Spinale, Frederick A. Crawford and Andreas F. von Recum

Medical University of South Carolina
Department of Surgery
Charleston, SC

Clemson University
Department of Bioengineering
Clemson, SC

Keywords: Cardiotomy Suction, Air/Blood Mixing, Hemolysis, Cardiopulmonary Bypass, Extra-Corporeal Circulation

Abstract

(J. Extra-Corp. Technol. 20[1]: p. 40-45, 44 references, Spring Issue) Over the past three decades improvements have been made to many of the components of the extracorporeal circulation system resulting in decreased blood damage. However, the cardiotomy suction return subcircuit, recognized as one of the most injurious components of heart-lung bypass, has remained relatively unchanged. The purpose of this study was to investigate the amount of blood damage that occurred with different cardiotomy suction designs. The five test designs compared two different suction tips with various air-mixing techniques, in vitro. Significant blood damage was observed in the air-containing designs as compared to the airless and control circuits. A minimal flow rate capable of excluding air was demonstrated as being the most important factor for blood protection, irrespective of aspirator tip design.

Introduction

Blood damage during heart-lung bypass is largely due to the trauma of cardiotomy suction return. This essential subcircuit returns approximately 10% of the cardiac output through the coronary and bronchial veins but must sometimes accommodate at least 50% of the perfusion flow. Mixed with air, an average of 21.0 L/hr of blood is returned via the cardiotomy suction lines in standard coronary artery bypass operations.

The major components of the cardiotomy suction system are an aspirator tip, approximately twelve feet of tubing, a roller pump for suction, and a cardiotomy reservoir with blood defoaming capabilities. Blood damage may include platelet injury, blood protein denaturation, and red blood cell (RBC) injury and lysis.

Studies of aspirator tips, blood handling tubing, blood pumps, and different oxygenator designs have produced no long-lasting modifications of the cardiotomy suction return circuit. Moreover, the complex flow relationship of the air/blood mixture is not well understood, even though damage to RBCs and platelets by shear stresses and blood component interactions during air/blood mixing in tubular flow have been studied.

Therefore, we have evaluated the blood damaging elements of the cardiotomy suction systems, emphasizing aspirator tip design and degree of air admixture with blood.

Materials and Methods

Standard clinical materials and equipment (extracorporeal tubing, connectors, and roller pumps) were used to create five similar cardiotomy suction circuits (Figure 1). Eight experiments were conducted utilizing heparinized blood from a different donor dog for each experiment. To facilitate the use of only one dog per experiment, blood aliquots of 300 ml were adjusted to a hematocrit (Hct) of 25% with physiological saline and placed into each of the five polypropylene “patient”
The blood was then aspirated by either an intracardiac (IC) sucker or an identical length of 1/4" internal diameter (ID) polyvinyl chloride (PVC) tubing. Circuits 1 and 2 aspirated only blood from the "patient" by using the two different aspirators with a pump speed of 400 ml/min (Figure 2). The remaining three circuits introduced a mixture of approximately 50% air and 50% blood into the systems. Circuits 4 and 5 aspirated air and blood continuously (800 ml/min) at the blood pool surface by using a PVC and an IC tip, respectively. Circuit 3 utilized a fully immersed IC tip in the blood pool while air was drawn directly into the tubing at a "Y" connector (Figure 2).

To adjust for the reduced volume (300 ml) available for each circuit while maintaining clinical tubing lengths (total of 18 ft. of 1/4" PVC tubing required a blood volume of approximately 175 ml), we fabricated a smaller version of the clinical cardiotomy reservoir. The modified cardiotomy reservoir, utilized in all of the circuits, consisted of a 250 ml polypropylene cup which had a section of PVC (1/4" ID) tubing cemented in the bottom for "debubble" blood to flow through. The lids of the reservoirs had two sections of PVC tubing cemented in them: one to direct inflow, and one to vent air. To recreate the defoaming capabilities of the reservoir, a clinical method which was utilized until disposable cardiotomy reservoirs became available in the early 1970's was applied (Personal Communication: Mr. James P. Deering). Hence, Tuffy polypropylene sponges, which had been coated with a silicone defoaming agent, were used as defoamers in the cardiotomy reservoirs. The flow rate of defoamed blood from the modified cardiotomy reservoirs back to the "patient" pools was fixed at 400 ml/min, such that the total volume of pumped blood was the same for all five circuits (24.0 L).

Blood samples were drawn and refrigerated after each hour run of the five experimental circuits. Two room temperature control samples were drawn for each experiment: one after hemodilution of the blood to Hct = 0.25 (Initial Control, C: time = 0 hrs) and one at the completion of all five circuit runs (Final Control, F: time = 2.5 hrs).

The hematological variables measured by a Coulter Counter included: hematocrit (Hct), red blood cell (RBC) count, platelet count (PLT), total cellular hemoglobin (Hgb), and mean corpuscular hemoglobin (MCH). Spectrophotometric hematological measurements included the evaluation of free plasma hemoglobin (FPH), a sensitive marker for blood damage, and red cell osmotic fragility. Blood smears, prepared with Wright's stain, were also used to analyze the extent of morphological damage to the red blood cells. Schlichting's modified equation for the evaluation

Figure 1: Cardiotomy Suction Circuit: Basic Testing Configuration

Figure 2: Specific Treatment Designs

a Model 999, Sarns Corp., Ann Arbor, MI 48106
b American Bentley, Irvine, CA 92714
c Miles Laboratories Inc., Elkhart, IN 46515
d Dow Corning Silicone Stopcock Grease, Dow Corning Corp., Midland, MI 48640
e Model 7-90, Coulter Electronics, Hialeah, FL 33010

42 The Journal of Extra-Corporeal Technology
of shear stresses in a turbulent jet was applied to the “air” circuits.

\[\tau = 0.03 \left(\frac{2}{\Delta P/\rho} \right), \]

where,

\[\Delta P = \text{pressure drop across the aspirator (mmHg)} \]

and,

\[\rho = \text{calculated density of measured air (53\%) and} \]

blood (47\%) mixture (gm/ml).

The statistical computer package BMD1 was used for analysis of the hematological variables by performing the Wilcoxon Signed-Rank Test for Paired Observations, the Kruskal-Wallis One-way Analysis of Variance Test, and Spearman’s Rank-correlation Coefficient Test.26 The levels of probability are presented in the text.

Results

All blood aliquot control values were within the normal ranges for dogs.19,37,38 The values for RBC count and Hct remained within these hemodiluted control limits at all times in all circuits. However, measurements of FPH revealed distinct differences between the circuits, as is evident in Figure 3. The mean values (± S.D.) of FPH increased from the initial control value of 28.9 ± 9.4 mg% to 41.1 ± 15.7 mg% (p < 0.05) after the blood had been stored at room temperature for 2.5 hours (final control). The mean values for circuits 1 and 2 were 52.9 ± 25.9 mg% and 60.2 ± 54.8 mg% revealed no difference. FPH in circuits 3, 4, and 5 increased to 761 ± 1002 mg%, 859 ± 1023 mg%, and 991 ± 1339 mg%, respectively, which was significantly more than in the “no air” circuits (p < 0.01). No differences appeared among the “air” circuits, but circuit 5 was greater than circuit 3 (p < 0.07).

A Wilcoxon sign-rank test performed on the FPH, Hbg, and MCH data substantiated the significant differences between the “no air” and the “air” circuits. However, there were no significant differences (p < 0.05) between the two trips within each flow group (“no air”: circuits 1 and 2, and “air”: circuits 4 and 5).

Similar results were obtained from the osmotic fragility tests (Figure 4). The non-osmotic fragility test also correlated well (r = 0.83, p < 0.01) with the FPH data, indicating that the amount of sublethal damage to the RBCs was directly related to the amount of hemoglobin released into the plasma. Similarly, in the Wright stained blood smears, as the suspending plasma darkened due to increased amounts of released hemoglobin, distinct morphological changes in the RBCs

1UCLA, Los Angeles, CA 90024

Volume 20, Number 1, Spring 1988

The Journal of Extra-Corporeal Technology 43
Discussion

Patients undergoing cardiopulmonary bypass exhibit a slight decrease (1%) in Hct and RBC count. This is consistent with the results presented here which show that RBCs are damaged rather than destroyed, resulting in an immediate increase in FPH and a subsequent decrease in RBC lifetimes, manifested as post-operative anemia.

Blood smears paired with the osmotic fragility data (Figure 4) illustrate how sublethal RBC damage appears as FPH. Although percent hemolysis leveled off at 0.00-0.35% osmotic strength, there was no visible deformation of the RBCs in the 0.35% solution, while rampant ghost cells in a hemoglobin stained plasma field were evident in the distilled water solution (0.00%). This suggests that a large number of RBCs do not have to be destroyed to raise the FPH level substantially. Sufficient damage to the RBCs causes an increase in membrane porosity, which allows hemoglobin to leak out of the cell into the plasma. This may subsequently lead to an osmotic influx into the cell creating large, deformed corpuscles (polikocytes and spherocytes) with decreased lifetimes.

Circuits 1 and 2, which aspirated blood but not air, produced little RBC damage. The laminar shear stresses (6.9 and 20.7 dynes/cm², respectively) calculated for both of these circuits were well below the trauma threshold of blood (500 dynes/cm²). The osmotic fragility curve also confirms that these are minimally damaging circuits. This is an indication that the other components of the circuits (roller pumps, tubing, and cardiotomy reservoir) also only cause minimal blood damage.

Although large variances appeared in the FPH data between experiments in the “air” circuits, apparent conclusions could still be drawn. Air mixing circuits 3, 4, and 5 all showed appreciable blood damage with increased FPH levels and RBC fragility when compared to the controls and the “no air” circuits. Moreover, a marked increase in crenation, hemoglobin stained plasma, and ghost cells appeared in the blood smears of the heavily damaged “air” runs. Even though there was an increase (p<0.07) in the amount of FPH damage when the IC tip aspirated blood with air (Circuit 5) than when air was introduced directly into the tubing independent of the tip (Circuit 3), the damage caused by the tips was minimal compared with the damage caused by the complex interactions of blood elements with air mixing.

Clinically, postoperative bleeding is related to a decrease in the number of functional PLT. The phenomenon of decreasing PLT occurs normally whenever blood is exposed to a foreign surface and platelets aggregate to that surface. However, PLT values decreased significantly between the control, “no air,” and “air” test groups, further substantiating that air/blood mixing is responsible for the majority of blood damage in our mock test circuits.

Although the large range of FPH values may, in part, be masking the results, no statistical difference was found between the tips of circuits 4 and 5 when air was aspirated with blood; even though markedly different bubble flow patterns and suction pressures were found between the two tips. The IC tip of circuit 5 was observed to create a flow pattern with many bubbles of diameter 2-4 mm while the PVC tip and sideport caused a distinct separation of blood and air regions in forming a “bolus” type of flow. These differences occurred due to the decreased diameter of the IC tip handle and orifice area (increased flow resistance) and because bubble formation is a function of both the orifice size and air velocity. We expected a difference between these two circuits for several reasons: the suction pressure created in circuit 5 (17.6 ± 1.7 mmHg) was greater (p<0.001) than in circuit 4 (5.6 ± 1.5 mmHg), the smaller bubbles of circuit 5 mixed and caused local areas of turbulence as they were broken and reformed, and the gas-blood surface interface was greater for circuit 5, which promoted a higher amount of blood protein denaturation.

The Schlichting calculated tip shear stresses for these two circuits were 868 and 2730 dynes/cm², respectively. Although substantial RBC damage appears at 1500 dynes/cm², no difference was detected between these circuits. Factors which disrupt the application of this equation to our system include: 1) inaccuracy in measuring the density and viscosity of an air/blood mixture, 3 the Reynolds numbers were below the accepted threshold of turbulence value of 2300. 3) the presence of wall impact and bubble flow pattern effects, and 4) blood damage which can occur under the turbulence threshold.

Although understanding of air/blood flow dynamics in tubing is inadequate and warrants further research, we can conclude that major improvement in the current cardiotomy suction systems must involve the elimination of their major source of damage: unstable air/blood mixing in tubular flow. We advocate continuing investigation of “no air” suction systems for clinical use. Until the time when these systems can be widely applied, blood damage due to suction may be minimized by aspirating only pools of blood, avoiding tip occlusion, keeping the pump flow rate at lowest possible levels when in use, avoiding sloshing of air and blood by turning suction pumps off when not needed, and decreasing the length of cardiotomy tubing to avoid loops. These observations also suggest avoidance of
other devices which promote air/blood interaction, such as, left ventricular decompression lines with vacuum relief valves that aspirate air directly into their return lines. This study re-emphasizes that blood damage due to air/blood mixing continues to be a major design fault in extracorporeal circulation. Reduction or elimination of blood damage extend the safe application period of extra-corporal circulation and improve patient recovery.

Acknowledgements

We would like to gratefully acknowledge the many people who unselfishly gave their time and assistance in the preparation of this manuscript, especially James Dearing whose untimely death preceded the publication of this paper. At Clemson University, Dr. Richard Figliola and Dr. Fertac Bilge for technical advice and review. At the Medical University of South Carolina, the Department of Laboratory Medicine, especially: Rebecca Reynolds (Division of Hematology), Joanne Wisters (Outpatient Laboratory), the staff of the Special Chemistry Laboratory, and the Pum Team.

References

38. Respiration and Circulation, Altman, P.L., and Dittner, D.S., (Eds.), Bethesda: Committee on Biological Handbooks, Federat...