Comparison of Arterial Oxygen Tension with Continuous Transcutaneous and Intravascular PO₂ Sensors and Intermittent Blood Samples Taken from the Sampling Port of a Bubble Oxygenator

Shyam VS Rithalia,* MSc, PhD
Biomedical Engineer
Intensive Therapy Unit
The Middlesex Hospital
Mortimer Street, London W1N 8AA

Jack Tinker, FRCS, FRCP
Director of ITU
The Middlesex Hospital
Mortimer Street, London W1N 8AA

Keywords: blood sample collection; PO₂, monitoring; oxygenator, bubbler; PO₂, transcutaneous

Abstract

Measurements of transcutaneous PO₂ (tc PO₂), intra-arterial PO₂ (PiO₂) and PO₂ of blood samples taken from the sampling port of the oxygenator (PoO₂) were compared with arterial blood PO₂ (PaO₂) in 16 adult patients undergoing cardiopulmonary bypass. tcPO₂ and PiO₂ were recorded continuously using Roche-Kontron electrodes. PoO₂ and PaO₂ were measured intermittently on a Radiometer ABL2 blood gas analyser.

A total of 86 observations were made on the 16 patients. The correlation coefficient (r) between transcutaneous and arterial PO₂ was 0.69 (p<0.001). The relationship between PoO₂ and PaO₂ was poor (r = 0.45, p<0.01). The intra-arterial electrode readings showed no significant difference with the PO₂ measured on arterial blood samples (r = 0.99, p<0.001).

Introduction

The measurement of the arterial blood oxygen tension (PaO₂) is a routine part of the assessment of patients' oxygenation while undergoing open heart surgery. Samples for blood gas analysis are usually withdrawn from the sampling port of the oxygenator provided for this purpose. The PaO₂ changes rapidly during cardiopulmonary bypass (CPB) and the variations can only be detected by frequent or continuous monitoring. The current methods, based on intermittent blood sampling, have inherent limitations related to the frequency with which samples can be taken, their storage and their processing before analysis. However, with the development of transcutaneous PO₂ sensors (1,2) and intra-arterial PO₂ electrodes (3,4) it has become possible to monitor PaO₂ continuously. This study compares tcPO₂, PiO₂ and PO₂ of blood samples taken from the sampling port of the oxygenator (PoO₂) with arterial blood PO₂ in adult patients.

Materials and Methods

Measurements were made in 16 adult patients (Table 1) whose ages ranged from 37 to 76 years (mean ± SD, 53.8 ± 9.9). They were undergoing normothermic cardiopulmonary bypass for valvular or coronary arterial surgery. The extracorporeal circuit consisted of a Bentley BOS-10 bubble oxygenator* and a Gambro (Model H-10)

*Present address, Dr. S V S Rithalia, Scientific Officer, Department of Orthopaedic Mechanics, University of Salford, Salford M5 4WT, UK, Tel 061 736 5843 Ex 7386

a Bentley Laboratories Inc, Irvine, CA 92714, USA

Volume 20, Number 4, Winter 1988

The Journal of Extra-Corporeal Technology
Table 1
Clinical details of patients

<table>
<thead>
<tr>
<th>Patient (number)</th>
<th>Sex (M/F)</th>
<th>Age (years)</th>
<th>Weight (kg)</th>
<th>Surface area (m²)</th>
<th>Diagnosis* (operation)</th>
<th>Perfusion rate (l/min)</th>
<th>Bypass time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>55</td>
<td>75</td>
<td>1.78</td>
<td>AVR</td>
<td>4.2</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>57</td>
<td>68</td>
<td>1.76</td>
<td>SVG × 3</td>
<td>4.4</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>49</td>
<td>57</td>
<td>1.64</td>
<td>SVG × 2</td>
<td>3.9</td>
<td>138</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>37</td>
<td>72</td>
<td>1.82</td>
<td>SVG</td>
<td>4.4</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>54</td>
<td>81</td>
<td>1.90</td>
<td>SVG</td>
<td>4.5</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>76</td>
<td>63</td>
<td>1.75</td>
<td>AVR + SVG</td>
<td>4.2</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>64</td>
<td>48</td>
<td>1.40</td>
<td>SVG × 3</td>
<td>4.4</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>50</td>
<td>64</td>
<td>1.77</td>
<td>SVG</td>
<td>4.2</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>37</td>
<td>67</td>
<td>1.79</td>
<td>SVG</td>
<td>4.2</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>54</td>
<td>68</td>
<td>1.76</td>
<td>SVG × 3</td>
<td>4.3</td>
<td>125</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>52</td>
<td>79</td>
<td>1.98</td>
<td>SVG × 2</td>
<td>4.9</td>
<td>105</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>49</td>
<td>57</td>
<td>1.64</td>
<td>AVR + MVR</td>
<td>3.8</td>
<td>120</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>62</td>
<td>71</td>
<td>1.82</td>
<td>SVG × 2</td>
<td>4.3</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>42</td>
<td>70</td>
<td>1.88</td>
<td>SVG</td>
<td>4.5</td>
<td>110</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>54</td>
<td>74</td>
<td>1.90</td>
<td>SVG</td>
<td>4.5</td>
<td>78</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>61</td>
<td>75</td>
<td>1.97</td>
<td>AVR</td>
<td>4.7</td>
<td>93</td>
</tr>
</tbody>
</table>

*Legend: AVR = Aortic Valve Replacement; SVG = Saphenous Vein Graft; MVR = Mitral Valve Replacement; TVR = Tricuspid Valve Replacement.

Blood samples were taken simultaneously from the cannulated radial artery and the sampling port of the oxygenator, and analysed immediately in duplicate using a Radiometer-ABL2 blood gas analyser.

Results

A total of 86 sets of observations were made on 16 patients and PaO₂ values were used as reference standard for statistical comparison. Overall, the PiO₂ readings were lower than the PaO₂ (Table 2), giving mean Δ(PaO₂ − PiO₂) = 12.2 ± 8.9 mm Hg, but a paired t-test showed that this difference was not statistically significant. The tcPO₂ and the PoO₂, however, were statistically different to PaO₂. The mean differences were Δ(PaO₂ − tcPO₂) = 108.9 ± 71.8 mm Hg and Δ(PaO₂ − PoO₂) = 89.9 ± 67.7 mm Hg. Linear regression analysis (Table 3) of the data yielded for (1) intravascular electrode (Figure 1): PiO₂ =
0.95 \(\text{PaO}_2 \) + 6.6 with a correlation coefficient \(r = 0.99 \) (p<0.001), (2) transcutaneous sensor (Figure 2): \(\text{AcPO}_2 = 0.42 \text{PaO}_2 + 17.9 \) with \(r = 0.69 \) (p<0.001) and (3) samples from the oxygenator (Figure 3): \(\text{PoO}_2 = 0.41 \text{PaO}_2 + 173.1 \) with \(r = 0.45 \) (p<0.01).

<table>
<thead>
<tr>
<th>Description</th>
<th>Equation</th>
<th>(r)</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PiO}_2) mmHg</td>
<td>(0.95(\text{PaO}_2) + 6.6)</td>
<td>0.99</td>
<td>14.4</td>
</tr>
<tr>
<td>(\text{tcPO}_2) mmHg</td>
<td>(0.42(\text{PaO}_2) + 17.9)</td>
<td>0.69</td>
<td>46.1</td>
</tr>
<tr>
<td>(\text{PoO}_2) mmHg</td>
<td>(0.41(\text{PaO}_2) + 173.1)</td>
<td>0.45</td>
<td>85.4</td>
</tr>
</tbody>
</table>

The intravascular electrodes were easy to insert through 18 gauge cannulae and they did not affect the intraarterial blood pressure measurement. There were no complications with either the transcutaneous or the intravascular sensor system. The \(\text{PiO}_2 \) readings correlated extremely well with the \(\text{PaO}_2 \) measured in vitro. Directional changes of arterial oxygen tension were always in agreement with transcutaneous PO2. For all patients \(\text{tcPO}_2 \) values were lower than \(\text{PaO}_2 \). There was wide discrepancy between arterial and oxygenator PO2 values. The \(\text{PoO}_2 \) values did not follow any trend, as shown by a large scatter in Figure 3, but in 58 out of 86 observations they were higher than \(\text{PaO}_2 \).

Discussion

The \(\text{PO}_2 \) electrodes used in this study were Clarke type polarographic sensors (6). It is well known that measurement of blood oxygen tension by these electrodes depends on temperature (7), flow and presence of anaesthetic gases (8). The \(\text{PO}_2 \) is also affected by the influence of temperature on oxyhaemoglobin dissociation (9). Although \(\text{PaO}_2 \), \(\text{PoO}_2 \) and \(\text{PiO}_2 \) are the measurements directly made in blood, \(\text{tcPO}_2 \) estimates blood \(\text{PO}_2 \) through the intact skin. The \(\text{tcPO}_2 \) measurement procedure itself is non-invasive and very simple but the readings are influenced by a variety of technical, methodological and physiological factors (10). Many variables, such as electrode temperature, peripheral perfusion and skin properties must be taken into account when the results are interpreted. The \(\text{tcPO}_2 \), in fact, indicates mean \(\text{PO}_2 \) in the tissue beneath the sensor (11).

It is interesting to note that the correlation between \(\text{tcPO}_2 \) and \(\text{PaO}_2 \) (\(r = 0.69 \)) is better than that between
Po_{2} and Pa_{2} ($r = 0.45$). Even at low cardiac flow rates changes in Pa_{2} were reflected by similar directional variations in tcPo_{2}. However, a wide discrepancy in $(\text{Pa}_{2} - \text{tcPo}_{2})$ shows that tcPo_{2} values cannot be used as a substitute for Pa_{2}. This difference is associated with reduced blood flow and the poor oxygenation in the cutaneous tissue (12,13) and probably in other organs (14). The ratio between tcPo_{2} and Pa_{2}, usually defined as the tcPo_{2} index (15), varied from patient to patient. Shibutani et al. (16) have evaluated the usefulness of this parameter as a monitor of coming off bypass. A lower tcPo_{2} has been always associated with poor peripheral perfusion (12,17).

In a recent study, Green et al. (18) compared artificial blood gas with continuous intra-arterial and transcutaneous PO$_2$ sensors in adult critically ill patients. On the basis of standard error of estimate (SEE) alone, they concluded that tcPo_{2} monitoring is as valuable as PO$_2$ in assessing Pa$_2$. We do not believe that their claim is based on sound physiological premises, however useful those who use transcutaneous technique in adults may claim it to be, and we think that tcPo_{2} should not be interpreted as a direct reflection of Pa$_2$. On the other hand, as our results show an excellent correlation ($r = 0.99$), the intravascular PO$_2$ sensor, when properly made and correctly calibrated, provides true PO$_2$ values in the artery itself and not just a trend of Pa$_2$. Whilst the exact relationship between the blood and transcutaneous PO$_2$ may remain unknown, PO$_2$ represents absolute Pa$_2$ values in the artery. Unfortunately, for initial in-situ calibration, PO$_2$ electrode requires a measurement on arterial blood in vitro. The intravascular electrode readings, therefore, can only be as accurate as the Pa$_2$ measured initially on the blood gas machine. Furthermore, the problems, limitations and contra-indications with the use of PO$_2$ electrodes are similar to those of arterial cannulation for monitoring cardiovascular function (19), and include infection and thrombosis.

In practice, blood sampling from the oxygenator was simple and easy. The procedure was also completely under the control of the perfusionist. However, the use of the sampling port is only of value if the Po$_2$ correlates well with Pa$_2$. Relationship between these two variables as shown in Figure 3, has a large scatter and poor correlation coefficient ($r = 0.45$). In the majority of cases the oxygenator values overestimated the arterial PO$_2$ and the mean difference, 89.9 ± 67.7 mmHg, was unacceptably large. Since both the Pa$_2$ and Po$_2$ samples were withdrawn simultaneously and analysed on the same blood gas machine, the differences between the two variables could not have occurred due to measurement errors. The wide discrepancy between the oxygenator and arterial values is probably due to the presence of microbubbles of oxygen which equilibrate with arterial blood after leaving the oxygenator, and inadequate mixing of blood at the sampling port. Based on the results of the present investigation as well as a previous report (20), we believe that the use of samples taken from the Bentley bubble oxygenator for assessment of Pa$_2$ is not an adequate alternative. The question as to whether this is true for other blood gas parameters, such as PCO$_2$ and pH, and other bubble oxygenators will remain unanswered until they are similarly evaluated, but the general criticisms and deductions are relevant to them.

Several workers (21,22) have suggested that microembolism is an important cause of brain damage during open heart surgery. Using continuous readings of the numbers of gaseous microemboli and PO$_2$ in the arterial line of an extracorporeal circuit, Pearson et al. (23) have demonstrated a direct relationship between the two measurements. It has also been established that hyperoxia can cause vasoconstriction and ischemia damage (24) to the retina, brain, heart and kidney. Various researchers (25) have recommended a range of Pa$_2$ between 100 and 200 mmHg during CPB. However, our observations and those of others (26) have shown that patients are exposed to unnecessarily high levels of oxygen. In order to avoid the risks of tissue hypoxaemia, the perfusionists are more inclined to run hyperoxic perfusions. This trend is likely to continue until the establishment of a clinically acceptable and reliable continuous blood gas monitoring system.

The following conclusions can be drawn from this study:

1. The intravascular PO$_2$ electrodes are accurate and can be easily used without disturbing the measurement of intra-arterial blood pressure.
2. Measurement of transcutaneous PO$_2$ cannot be considered as a substitute for Pa$_2$ monitoring in patients during CPB.
3. The PO$_2$ of blood samples taken from the sampling port of a bubble oxygenator is a misleading and poor indicator of arterial oxygen tension.

Acknowledgments

We wish to thank the surgeons and physicians for permission to study their patients, Paul Bosworth for his help and Norah Virtue for her secretarial assistance.

References

